6500 CHIP FAMILY SUPPLEMENT

TO THE

CROSS ASSEMBLER MANUAL

CAS-2006-00

TABLE OF CONTENTS

INTRODUCTION.eseeossvovcecsoscososossssssossnsas S5-I
6500 PERMANENT SYMBOL TABLE..ecoesssceccecoessss S—1
CALLING THE 6500 CROSS ASSEMBLER...sesseeeesee S=9
TERMINATING THE 6500 CROSS ASSEMBLER.:eseeesss S=9

SAMPLE 6500 ASSEMBLY LISTINGS.ceecescecscsssss S5=9

LIST OF TABLES

S-]. . 6500 INSTRUCTION SET SUMMARY. o000 s 00080 S-Z

iii

INTRODUCTION

This guide is a supplement to the Emulogic Relocatable Macro
Cross Assembler Manual, providing specific assembler
information for writing software programs to run on the 6500
microprocessor series. This supplement applies to the
following chips:

* 6502 * 6505 * 6512
* 6503 * 6506 * 6513
* 6504 * 6507 * 6515

This supplement includes:
* a summary of the 6500 instruction set,

* procedures for running the 6500 cross
assembler, and

* sample 6500 cross assembler output listings

6500 PERMANENT SYMBOL TABLE

The following is a summary of the mnemonics for the
operation (op) codes included in the 6500 series instruction
set., They are stored in the Permanent Symbol Table and are
automatically recognized by the Emulogic relocatable macro
cross assembler. References to, and operations with the
registers within the microprocessor are legal. For a
detailed description of the 6500 op codes, refer to the
Synertek SY6500/MCS6500 Microcomputer Family Programming
Manual,

Instruction operands are represented herein as follows:

Operand Meaning
ii Immediate operand (byte)
~n 8-bit relative branch address
aa 8-bit address variable (zero page)
aaaa 16-bit absolute address
X X index register
y Y index register
A Accumulator

Programming Notes:
(1) Address references in zero page must be predefined.
(2) The use of complex forward references should be avoided

as they may result in phase errors.

S-1

TABLE S-1.

6500 INSTRUCTION SET SUMMARY

MNEMONIC OPERANDS DESCRIPTION EXAMPLE

ADC #ii Add immediate to accumulator ADC #20
with carry

ADC aa Add memory to accumulator ADC 3F
with carry

ADC aaaa Add memory to accumulator ADC OFFF
with carry

ADC aa,x Add memory indexed to accumu- ADC 3,X
lator with carry

ADC aaaa,x Add memory indexed to accumu- ADC TAG,X
lator with carry

ADC aaaa,y Add memory indexed to accumu- ADC 245,Y
lator with carry

ADC (aa,x) Add memory indexed indirect ADC (4,X)
to accumulator with carry

ADC (aa),y Add memory indirect indexed ADC (7),Y
to accumulator with carry

AND #ii AND immediate with accumulator AND #125.

AND aa AND memory with accumulator AND 10

AND aaaa AND memory with accumulator AND 258.

AND aa,x AND memory indexed with AND 5A,X
accumulator

AND aaaa,x AND memory indexed with AND 300.,X
accumulator

AND aaaa,y AND memory indexed with AND TAG,Y
accumulator

AND (aa,x) AND memory indexed indirect AND (OFE,X)
with accumulator

AND (aa),y AND memory indirect indexed AND (25.),Y
with accumulator

ASL A Shift left accumulator one bit ASL A

ASL aa Shift left memory one bit ASL 254,

ASL aaaa Shift left memory one bit ASL TAG

Table

S=1. 6500 Instruction Set Summary (contd)

MNEMONIC OPERANDS DESCRIPTION EXAMPLE

ASL aa,x Shift left memory indexed one ASL 0A4,X
bit

ASL aaaa,x Shift left memory indexed one ASL 1452,X
bit

BCC ~n Branch on carry clear BCC 12

BCS e Branch on carry set BCS TAG

BEQ ~n Branch on result zero BEQ 34.

BIT aa Test bits in memory with BIT OFF
accunmulator

BIT aaaa Test bits in memory with BIT 257.
accumulator

BMI an Branch on result minus BMI 0A

BNE ~n Branch on result not zero BNE 123.

BPL ~ Branch on result plus BPL TAGI

BRK Force break BRK

BVC an Branch on overflow clear BVC 24

BVS an Branch on overflow set BVS OAB

CLC Clear carry flag CLC

CLD Clear decimal load CLD

CLI Clear interrupt disable bit CLI

CLV Clear overflow flag CLV

CMP #ii Compare immediate to accumu- CMP #250.
lator

cMmp aa Compare memory to accumulator CMP 86

CcMP aaaa Compare memory to accumulator cMP 257,

CMP aa,x Compare memory indexed to CMP 4,X
accumulator

CMP aaaa,x Compare memory indexed to CMP OFFFF,X

accumulator

5-3

MNEMONIC OPERANDS DESCRIPTION

CMP aaaa,y Compare memory indexed to
accumulator

CMP (aa,x) Compare memory indexed
indirect to accumulator

CMP (aa),y Compare memory indirect
indexed to accumulator

CPX #ii Compare immediate and index X

CPX aa Compare memory and index X

CPX aaaa Compare memory and index X

CPY fii Compare immediate and index Y

CPY aa Compare memory and index Y

CPY aaaa Compare memory and index Y

DEC aa Decrement memory by one

DEC aaaa Decrement memory by one

DEC aa,x Decrement memory indexed by
one

DEC aaaa,x Decrement memory indexed by
one

DEX Decrement index X by one

DEY Decrement index Y by one

EOR #ii Exclusive OR immediate with
accumulator

EOR aa Exclusive OR memory with
accumulator

EOR aaaa Exclusive OR memory with
accumulator

EOR aa,x Exclusive OR memory indexed
with accumulator

EOR aaaa,x Exclusive OR memory indexed
with accumulator

EOR aaaa,y Exclusive OR memory indexed

Table S~1. 6500 Instruction Set Summary (contd)

with accumulator

S-4

EXAMPLE
CMP TAG,Y
CMP (255.,X)
CMP (6F),Y
CPX #77
CPX 45
CPX 284
CPY #2
CPY 7F
CPY OFFA
DEC 80
DEC TAG
DEC 7F,X
DEC 3FA,X
DEX

DEY

EOR #9
EOR OF7
EOR 100
EOR 25,X
EOR TAG,X
EOR 200,Y

Table S-1. 6500 Instruction Set Summary (contd)

MNEMONIC OPERANDS DESCRIPTION EXAMPLE
EOR (aa,x) Exclusive OR memory indexed EOR (5,X)
indirect with accumulator
EOR (aa),y Exclusive OR memory indirect EOR (OFF),Y
indexed with accumulator

INC aa Increment memory by one INC 88

INC aaaa Increment memory by one INC 986

INC aa,x Increment memory indexed by one INC 35,X

INC aaaa,x Increment memory indexed by one INC 458,X

INX Increment index X by one INX

INY Increment index Y by one INY

JMP aaaa Jump to new location JMP 6

JMP (aaaa) Jump to new location indirect JMP (TAG)

JSR aaaa Jump to new location saving JSR 101
return address

LDA #ii Load accumulator with immediate LDA #55

LDA aa Load accumulator with memory LDA 99

LDA aaaa Load accumulator with memory LDA 105

LDA aa,x Load accumulator with memory LDA OFF,X
indexed

LDA aaaa,Xx Load accumulator with memory LDA TAG,X
indexed

LDA aaaa,y Load accumulator with memory LDA 3FF,Y
indexed

LDA (aa,x) Load accumulator with memory LDA (ODD,X)
indexed indirect

LDA (aa),y Load accumulator with memory LDA (55),Y
indirect indexed

LDX #ii Load index X with immediate data LDX #123.

LDX aa Load index X with memory LDX 255.

LDX aaaa Load index X with memory LDX 100

S-5

Table S-1. 6500 Instruction Set Summary (contd)

MNEMONIC OPERANDS DESCRIPTION EXAMPLE
LDX aa,y Load index X with memory indexed LDX OAB,Y
LDX aaaa,y Load index X with memory indexed LDX 105,Y
LDY #ii Load index Y with immediate data LDY #34
LDY aa Load index Y with memory LDY OFA
LDY aaaa Load index Y with memory | LDY 555
LDY aa,x Load index Y with memory indexed LDY 2,X
LDY aaaa,x Load index Y with memory indexed LDY 4F5,X
LSR A Shift right accumulator one bit LSR A
LSR aa Shift right memory one bit LSR 55
LSR aaaa Shift right memory one bit LSR 375
LSR aa,x Shift right memory indexed one LSR 41,X
bit

LSR aaaa,x Shift right memory indexed one LSR TAG,X
bit

NOP No operation NOP

ORA fii OR immediate with accumulator ORA #154.

ORA aa OR memory with accumulator ORA OF1

ORA aaaa OR memory with accumulator ORA TAGI

ORA aa,x OR memory indexed with accu- ORA 56,X
mulator

ORA aaaa,x OR memory indexed with accu- ORA 678,X
mulator

ORA aaaa,y OR memory indexed with accu- ORA 34,Y
mulator

ORA (aa,x) OR memory indexed indirect with ORA (45,X)
accumulator

ORA (aa),y OR memory indirect indexed with ORA (77),Y
accumulator

PHA Push accumulator on stack PHA

Table S-1. 6500 Instruction Set Summary (contd)

MNEMONIC OPERANDS DESCRIPTION EXAMPLE

PHP Push processor status on stack PHP

PLA Pull accumulator from stack PLA

PLP Pull processor status from stack PLP

ROL A Rotate left accumulator one bit ROL A

ROL aa Rotate left memory one bif ROL 23

ROL aaaa Rotate left memory one bit ROL OFFF

ROL aa,x Rotate left memory indexed one bit ROL 34,X

ROL aaaa,x Rotate left memory indexed one bit ROL TAG,X

ROR A Rotate right accumulator one bit ROR A

ROR aa Rotate right memory one bit ROR 63

ROR aaaa Rotate right memory one bit ROR 1627

ROR aa,x Rotate right memory indexed one bit ROR 3,X

ROR aaaa,x Rotate right memory indexed one bit ROR 0CA4,X

RTI Return from interrupt RTI

RTS Return from subroutine RTS

SBC #ii Subtract immediate from accumulator SBC #OFF
with borrow

SBC aa Subtract memory from accumulator SBC 65.
with borrow

SBC aaaa Subtract memory from accumulator SBC 250
with borrow

SBC aa,x Subtract memory indexed from SBC OED,X
accumulator with borrow

SBC aaaa,Xx Subtract memory indexed from SBC 1000,X
accumulator with borrow

SBC aaaa,y Subtract memory indexed from SBC 8219,Y
accumulator with borrow

SBC (aa,x) Subtract memory indexed indirect SBC (88,X)

from accumulator with borrow

s-7

Table S-1. 6500 Instruction Set Summary (contd)

MNEMONIC OPERANDS DESCRIPTION EXAMPLE

SBC (aa),y Subtract memory indirect indexed SBC (0DC),Y
from accumulator with borrow

SEC Set carry flag SEC

SED Set decimal mode SED

SEI Set interrupt disable status SEI

STA aa Store accumulator in memory STA 2

STA aaaa Store accumulator in memory STA 258.

STA aa,x Store accumulator in memory indexed STA O0BA,X

STA aaaa,x Store accumulator in meﬁory indexed STA TAG,X

STA aaaa,y Store accumulator in memory indexed STA 56,Y

STA (aa,x) Store accumulator in memory indexed STA (65,X)
indirect

STA (aa),y Store accumulator in memory STA (52),Y
indirect indexed

STX aa Store index X in memory "STX OFF

STX aaaa Store index X in memory STX TAGI1

STX aa,y Store index X in memory indexed STX 79,Y

STY aa Store index Y in memory STY 45

STY aaaa Store index Y in memory STY 376

STY aa,x Store index Y in memory indexed STY 123.,X

TAX Transfer accumulator to index X TAX

TAY Transfer accumulator to index Y TAY

TSX Transfer stack pointer to index X TSX

TXA Transfer index X to accumulator TXA

TXS Transfer index X to stack pointer TXS

TYA Transfer index Y to accumulator TYA

s-8

CALLING THE 6500 CROSS ASSEMBLER

To call the 6500 cross assembler from the system device,
enter the following command in response to the RT-11
keyboard monitor prompt:

.RUN X6500 CR

When the cross assembler responds with an asterisk (*), it
is ready to accept command string input and to perform
an assembly.

TERMINATING THE 6500 CROSS ASSEMBLER

If you have typed
.RUN X6500 CR

and received the asterisk prompt but have not yet entered
the command string, you can terminate 6500 cross assembler
control and return to the keyboard monitor by typing

“C

If you have completed command string input and started an
assembly, you can halt the assembly process at any time by
typing

“c"C

This returns control to the RT-~11 keyboard monitor, and a
system monitor prompt (.) will appear on the terminal screen.

SAMPLE 6500 ASSEMBLY LISTINGS

The remainder of this supplement consists of sample output
listings from the 6500 cross assembler.

JHATH,

X6300 V1,01 16-MAY-82 PAGE 1

0010
4000

4032
003B
EC18
EABS
EB9E
ERAC
F2EL
F321
F361
Fial
F3EL
£808
400c
000
7000
A001
002
#0603
AQ)4
ADOS
A007
A00B
AOOC
ACOD
0190

00

00

00

00

00
0200

0190
019t
0192
0193
0194

0200
0201
0202
0204
0207
0209
0200
020F
0211

08
78
A9
8D
A9
8D
20
30
30

04
oc
0c
00
33
F9

#0

Ao
Ad

0213 2

0214 Ao
0218 20
021B 10
021B a9
Q21F 8n

CF
00
00
FR
01
05

02

A0

#0

.
)
a
!

!
FRINT?

PRI}

+RADIX
+ASECT

16

DIRECT ASSIGNMENT OF LABELS

pC=32
SENI=IB

DE1=0EC18
PACK=0EAB4
PHXY=0EBYE
PLXY=0EBAC
COLO=0F2E1
COL1=0F321
COL2=0F351
CoL3=0F3A1
COL4=0F3E1L
T2L=04808
KOTON=0C
MOTOFF=0E
BRB=0A000
DRA=0A001
IDRB=04002
DDRA=0A003
T1L=04004
T1CH=04003
T1H=0A007
ACR=0A008
PCR=0A00C
IFR=0A00D

+=190
SAVAS
EOFLY
CRFLS
PBPTR?
FBUF:
=200

ENTRY §

FHP
SEI
LD4
574
LDA
5TA
BIT
BVC
BH1

LEFT T0

JSR
Loy
RIT
BFL
LDA
STA

BYTE
BYTE
JBYTE
+BYTE
WBYTE

INITIALIZATION

1SAVE FROCESSOR STATUS

{DISABLE INTERRUPT TURING PRINT

$010
T
$MOTON
PCR
DRE
RMAR
PR1

FSTART KOTOR
$TEST LIMIT SWITCHES

RIGHT FRINT

DEBDEL
0
ORB
LM1

§
TiCH

i DEBOUNCE DELAY

PWAIT TO CLEAR HARGIN

7START DDT RIMER(200)

JMAIN, X6300 V1.01 16-MAY-82 PAGE 1-1

-

8 0222 k9 74 01 LM2: LDA FRUF»Y +LOAD WITH CHARACTER

99 0225 29 IF AND $3F

60 0227 fA TAX

1 022 A? 20 LDA $20

42 0224 99 74 01 STA FBUFsY JREPLACE WITH BLANK
83 022D BD El F2 LDA COLOsX

&4 0230 20 b 02 JSR QUTDOT sQUTFUT COLUMN O
45 0233 kD 21 F3 LDA CoLLsX

46 0234 20 Ab 02 JER QUTDOT 0UTPUT COLUMN 1
47 0239 BD 61 F3 LDA COL2sX

48 023C 20 #é 02 JSR OUTDOT FOUTFUT COLUMN 2
49 023F BD Al F3 LDA COLIHX

70 0242 20 Abé 02 JSR QUTDOT 50UTPUT COLUMN 3
74 0245 BRI El F3 LDA CoL4sX

72 0248 20 hé 02 J5R QUTDOT FOUTPUT COLUMN 4
73 024B AS 00 LD4 $0 # INSERT 1 SPACE BETWEEN CHARACTERS
74 024D 20 fé 02 JSR puTHOY

75 0250 €8 INY

76 0251 £o 48 CPY ¥72, {END OF LINE?

77 0253 90 Ch BCC LK2 iIF NOT» GET MORE CHARACTERS
78 H

79 i EXIT ROUTINE

80 7

81 0253 A9 FF FRXIT: LDA $OFF

82 0297] (8 AB STA iR

33 025A 20 18 EC JSR DE1

84 025D A9 JE LDA $MOTOFT

85 025F 8D 0C Ad 5TA PCR iMOTOR OFF

B6 0262 28 PLP {RESTORE PROCESSOR STATUS
87 0263 40 RTS

8 §

89 i RIGHT TO LEFT FRINT

20 i

71 0254 20 CF 02 RMAR: JSR DEBDEL

92 0267 A 47 Loy 71, iRIGHT BUFFER LINIT
73 0269 2 00 AG RH1: BIT IRB

74 24C 30 FB BUC RML

75 024E A% 01 LDA #

76 0270 8n 03 A0 5TA TiCH

97 0273 :3 74 01 RM2 LDA PRUFY

98 0274 29 IF AND $IF

99 0278 AA TAX

160 0279 A9 20 LDA 20

101 027B 99 74 01 STA PRUF,Y
102 027t BD £l F3 LDA COL4sX

103 0281 20 Aé 02 JSR puTROT
104 (284 BD a1 F3 LDA COL3sA

105 0287 20 fé 02 JSR QuTROT

106 0284 BD 81 F3 LDA CoL2yX
107 028D 20 Ab 02 JSR puTDOT

108 0290 BD 21 F3 LDA CoL1,X

109 0293 20 fAé 02 JGR ouTooT

110 0294 BD Ei F2 LDA COLOsX

111 0299 20 Ab 02 JSR ouTDRoT

112 029¢C A? 00 LTA §0

113 0M9E 20 Aé 02 J5R ouTROT

114 02a1 88 DEY

JMAIN,

115
114
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
130
131
132
133
134
155
136
137
1538
159
160
161
182
163
164
1835
166
147
148
169
170
171

X6300 V1.0t 16-HAY-82 PAGE 1-2

H242
0244

0246
0248
02AB
024D
0280
0282
0285
0287
02BA
02BC
(02BF
02C1
02C4
02C4
02C9
02Ck
02CE

Y2CF
02m
(204
0206

4209
0208
020D
02E0
02E1
02E3
02ES
02E8
02ER
O2EE
02F1
02F4
02F4
02F9

02FA
Q2FC
02FD
4300
0303
0305
0307
0309

10
30

49
2C
30
8D
A9
8b
A?
8n
Ay
2
30
8D
A9
b
A9
80
50

A?
an
A9
iC

A?
A9
70
CA
10
A9
an
8o
8n
8E
8t
A9
8D
40

90
68
20
8n

2

9
Bo
3

CF
AF

FF
oD
FB
01
05
07
86
04
FF
0D
FB
01
01
07
0o
04

10
0d
27
18

47
20
94

FA
00
93
52
71
01
03
40
0B

]

9E
90
7F
0b
0E
92

A)

Al

A0

Ad

Al

AQ

A0

A8

EC

01

01
01
01
A0
A0

A0

EB
01

01

i

i
ouTROT?
0b1:

0p23

.
i
.
i
i

DEBREL:

DRILS

.
'
1
i

IRIVER:

BPL
NI

RM2
PRXIT

HERE TO OUTPUT 1 COLUMN OF DOTS

EOR
BIT
BVC
5TA
LDA
STA
LDA
5TA
LDA
RIT
BVC
5TA
LDA
5TA
LDA
5TA
RTS

$0FF
IFR
om
DRA
$5
TiH
86
TiL
$0FF
IFR
0p2
RA
#1
TiH
$0D0
TiL

DELAY ROUTINE

LDA
5TA
LDA
Jup

$10
T
£27
DEL

+INVERT FOR QUTPUT

iWAIT FOR INTER-DOT TIMEOUT
iOUTPUT 1OTS

+LOAD INTER-DOT TIME

WAIT FOR DOT TIMEOQUT
10FF

+ DEBOUNCE DELAY

INITIALIZATION ROUTINE

LDA
LDA
STA
BEX
BPL
LDA
§TA
STA
5TA
5TX
57X
LDA
5TA
RTS

$71.
$20
PEUF+X

DRI1
#
FEPTR
CRFL
EQFL
DORA
IDRA
$#40
ACR

DRIVER ROUTINE

BCC
PLA
JSR
5TA
AND
CHP
ENE
ASL

BRI

PHXY
SAVA
$7F
$00
IRt
CRFL

iCLEAR BUFFER

iT1 FREE RUN

iCHECK FOR INITIALIZATION
fGET CHARACTER TO BE PRINTED

FCARRIAGE RETURN?

7 YES

HAIN, X6500 V1,01 14-MAY-82 PAGE 1-3

172 030C 90 03 BCC CR1 iFLAG SET?

173 030E 20 74 03 JSR PLINE SYESsFRINT LINE

174 0311 38 CrR1: SEC fSET CARRY FLAG

175 0312 13 92 01 ROR CRFL #SET CARRIAGE RETURN FLAG
176 0315 Do 36 BNE DRXIT

177 0317 ce R3] DR1? CHP 13D IS THERE AN * = *?

178 0319 Do 1A BNE BR3

179 0318 OF 92 01 ASL CRFL #YES

180 031E 70 0 RCC k2

181 0320 20 00 02 JSR FRINT #PRINT LINE

182 0323 A9 00 LDA #0

183 0325 8D 93 01 STA FBPTR 7ZERD BUFFER POINTER

184 0328 38 SEC

135 0329 6E 1 01 ROR EQFL #SET EQUAL FLAG

186 032€ o 1F BNE IRXIT

187 032t O 71 01 DR2} ASL EQFL §CRFL NOT SETy TEST EQFL
188 0331 g0 35 BCC STUFF §PUT * = * IN BUFFER IF FIRST
189 0333 BO 18 BCS DRXIT FIGNORE IF SECOND

{90 6335 £3 3B ORI} CHF SEMI FSEMICOLON?

191 0337 o 13} BNE RS

192 0339 0t 92 01 ASL CRFL $YES

193 033C AE 33 01 LDX FBFTR

194 03%F E0 0c £rx 12, iSTART OF LINE?

195 0341 Fo 2 REQ STUFF

196 0343 A2 1E DR4Y LDX $30, iND

197 0345 EC 93 01 CPX FBPTR iTAB 70 COLUMN 30

198 4348 90 03 BCC ORXIT

199 0344 8t 93 01 STX FRPTR

200 034D 20 AC ER DRXITY JSR PLXY

201 0330 AD 90 01 LDA 5AVA

202 0353 60 RTS

203 0354 0t 92 01 DR3! aASL CRFL iNDT CARRIAGE RETURN,EQUAL OR SEMICOLON
204 0357 90 oF BCC STUFF iLOAD

205 0359 A2 9 LDX $12,

206 035B EC 93 01 CPX FEFTR CHECK FOR BEYOND COLUMN 12
207 035E 90 05 ECC RS

208 0340 8E 93 01 57X FBFTR ~ §TAB TO COLUMN 12

209 0343 BO 03 BCS STUFF 3LOAD

210 0345 20 74 03 DRé! JSR PLINE iFRINT LINE
A1 0348 AD 70 01 STUFFY LDA SAVA JGET CHARACTER

212 034B AE 93 01 LDX FEFTR iGET BUFFER FOINTER
213 03¢E E0 48 CPX ¥#72, JCHECK FOR FULL
240370 RO DR BCS IRXIT

215 0372 90 94 01 5TA FBUFyX iNOsFUT CHARACTER IN BUFFER
216 0375 EE 93 01 INC PBFTE i INCREMENT FOR ANOTHER
217 0378 Bo b3 ENE DRXIT

218 0374 20 00 02 PLINE: JSR PRINT

21% 637 A2 00 LDX #0

20 037F AS 33 LIA PC+l iPC UPPER

221 031 20 8F 03 JSK CONVT

222 0384 A5 32 LDA FC iFC LOWER

23 0384 20 8F 03 JSR CoNVT

224 0389 A9 0c LDA $12,

225 0388 8E 73 01 5TX FBPTR iSET COLUMN POINTER
226 038E 60 RTS

227 i

228

i HEX TO ASCII CONVERSION AND LOAD

HAIN,

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

X6300 V1,01 16-MAY-82 PAGE 1-4

H36F
0390
0391
0392
0393
0394
0397
0398
0394
0398
0390
039F
0341
0343
0346
0347

48
44
4
48
44
20
68
29
18
69
e
70
49
i
E8
60
0001

24

OF

30
3A
02
06
94

CONVTS

03

CONv?

01 CONVLS

PHA
LSR
LSR
LSR
L5SR
JSR
PLA
AND
CLe
ADC
CHpP
BEC
ADC
ETA
INX
RTS
END

0 X > > D

ONY

$0F
iCLEAR CARRY FLAG
$30
$24
CONV1
1]
FBUF + X

+HAIN,

5YKBOL TABLE

ACR
toLo
coLl
toL2
CoL3
CoLA
CoN
CONVT
convt
CRFL
CR1
DMRA =

g H o WU

» ABS,

ERRORS DETECTED:

VIRTUAL MEMORY USED:

AQOR
F2EL
F321
F3s1
Fiat
F3E1
0394
038F
03A3
0192
0311
AOO3

03A8
0000

00
01

[iDRB

DERDEL

DE1
DRA
DRB
DRI
DRIVER
DRI
DRXIT
DR1
DR2
DR3

X6500 V1,01 16-MAY-82 PAGE 1-5

£#002
02CF
EC18
A001
£#000
0209
02FA
020D
034D
0317
032E
0335

288 WORDS (2 PAGES)

DYNAMIC MEMORY AVAILABLE FOR 74 PAGES
10Y1ITST65=0Y12T5T43

R4

RS
DR&
EQFL
IFR =
LMAR
LMl

LK2
HOTOFF=
HOTON =
o

0D2

0343
0334
0345
0191
AGOD
0213
0218
9222
QO0E
400C
02A8
02BC

uTROT
FACK
FBPTR
FRUF
FC
FCR
PHXY
PLINE
FLXY
FRINT
FRXIT

0246
EABA
0193
0194
0032
ABOC
EBYE
037A
ERAC
4200
0255

FR1
RMAR
kM1
RM2
54VA
SEMI
STUFF
T1CH
TiH
TiL
T2L

020C
0264
0269
0273
01%0
0o3r
0368
A003
A007
#004
AB08

ADDENDUM TO: 6500 CHIP FAMILY SUPPLEMENT TO THE OCTOBER 14, 1983
CROSS ASSEMBLER MANUAL

The ability to reference the low and/or high byte of a word has been
added to the instruction set of the EMULOGIC 6500 cross assembler. This added
capability has been provided for all 8-bit immediate data instructions. A
coding example is provided in the following table.

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

ADC #nn(L) Add with carry the low order byte of ADC #TAG(L)
the immedaite data to the accumulator

ADC #nn(H) Add with carry the high order byte of ADC #TAG(H)
the immediate data to the accumulator

AND #nn(L) Logical AND the low order byte of the AND #TAG(L)
immediate data and the accumulator

AND #on(H) Logical AND the high order byte of the AND #TAG(H)
immediate data and the accumulator

CMP #nn(L) Compare the low order byte of the CMP #TAG(L)
immediate data with the accumulator

CMP #on(H) Compare the high order byte of the CMP #TAG(H)
immediate data with the accumulator

CPX #nn(L) Compare the low order byte of the CPX #TAG(L)
immediate data with Index X

CPX #nn(H) Compare the high order byte of the CPX #TAG(H)
immediate data with Index X

CPY #an(L) Compare the low order byte of the CPY #TAG(L)
immediate data with Index Y

CPY #nan(H) Compare the high order byte of the CPY #TAG(H)
immediate data with Index Y

EOR #an(L) Exclusive OR the low order byte of EOR #TAG(L)
the immedaite data and the
accumulator

EOR #nn(H) Exclusive OR the high order byte of EOR #TAG(H)
the immediate data and the
accumulator

LDA #fan(L) Load the accumulator with the low LDA #TAG(L)
order byte of the immediate data

LDA #nn(H) Load the accumulator with the high LDA #TAG(H)
order byte of the immediate data

LDX #an(L) Load Index X with the low order LDX #TAG(L)
byte of the immediate data

LDX #an(H) Load Index X with the high order LDX #TAG(H)
byte of the immediate data

LDY #nn(L) Load Index Y with the low order LDY #TAG(L)
byte of the immediate data

LDY #nn(H) Load Index Y with the high order LDY #TAG(H)
byte of the immediate data

ORA #nn(L) Logical OR the low order byte of the ORA #TAG(L)

immediate data with the accumulator

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

ORA #nn(H) Logical OR the high order byte of the ORA #TAG(H)
immediate data with the accumulator
SBC #nn(L) Subtract the low order byte of the SBC #TAG(L)

immediate data from the accumulator
with borrow
SBC #an(H) Subtract the high order byte of the SBC #TAG(H)
immediate data from the accumulator
with borrow.

TAG = absolute reference, relocatable reference, or global reference

Additionally, the ability to force absolute and absolute indexed
addressing modes (for those intructions which it is legal) has been added
to the EMULOGIC 6500 cross assembler. The instructions for which this is
legal are described in the table below.

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

ADC OPER Add with carry memory to accumulator ADC TAG(A)

ADC OPER,X Add with carry memory to accumulator ADC TAG(A),X
indexed by X

ADC OPER, Y Add with carry memory to accumulator ADC TAG(A),Y
indexed by Y

AND OPER Logical AND memory with accumulator AND TAG(A)

AND OPER,X Logical AND memory with accumulator AND TAG(A),X
indexed by X

AND OPER,Y Logical AND memory with accumulator AND TAG(A),Y
indexed by Y

ASL OPER Shift left one bit (memory or accumu— ASL TAG(A)
lator)

ASL OPER, X Shift left one bit (memory or accumu- ASL TAG(A),X
lator) indexed by X

BIT OPER Test bits in memory with accumulator BIT TAG(A)

CMP OPER Compare memory with accumulator CMP TAG(A)

CMP OPER,X Compare memory with accumulator CMP TAG(A),X
indexed by X

CMP OPER,Y Compare memory with accumulator CMP TAG(A),Y
indexed by Y

CPX OPER Compare memory and index X CPX TAG(A)

CPY OPER Compare memory and index Y CPY TAG(A)

DEC OPER Decrement memory by one DEC TAG(A)

DEC OPER,X Decrement memory by one DEC TAG(A),X

indexed by X

A=-2

MNEMONIC/OPERAND

DESCRIPTION EXAMPLE
EOR OPER Exclusive OR memory with accumulator EOR TAG(A)
EOR OPER,X Exclusive OR memory with accumulator EOR TAG(A),X
indexed by X
EOR OPER,Y Exclusive OR memory with accumulator EOR TAG(A),Y
indexed by Y
INC OPER Increment memory by one INC TAG(A)
INC OPER,X Increment memory by one INC TAG(A),X
indexed by X
JMP OPER Jump to new location JMP TAG(A)
JSR OPER Jump to new location saving return JSR TAG(A)
address
LDA OPER Load the accumulator with memory LDA TAG(A)
LDA OPER,X Load the accumulator with memory LDA TAG(A),X
indexed by X
LDA OPER,Y Load the accumulator with memory LDA TAG(A),Y
indexed by Y
LDX OPER Load Index X with memory LDX TAG(A)
LDX OPER, Y Load Index X with memory LDX TAG(A),Y
indexed by Y
LDY OPER Load Index Y with memory LDY TAG(A)
LDY OPER,X Load Index Y with memory LDY TAG(A),X
indexed by X
LSR OPER Shift right one bit LSR TAG(A)
LSR OPER,X Shift right one bit indexed LSR TAG(A),X
by X
ORA OPER Logical OR memory with accumulator ORA TAG(A)
ORA OPER,X Logical OR memory with accumulator ORA TAG(A),X
indexed by X
ORA OPER, Y Logical OR memory with accumulator ORA TAG(A),Y
indexed by Y
ROL OPER Rotate one bit left ROL TAG(A)
ROL OPER,X Rotate one bit left indexed ROL TAG(A),X
by X
ROR OPER Rotate one bit right ROR TAG(A)
ROR OPER,X Rotate one bit right indexed ROR TAG(A),X
by X
SBC OPER Subtract memory from accumulator SBC TAG(A)
with borrow
SBC OPER,X Subtract memory from accumulator SBC TAG(A),X
with borrow indexed by X
SBC OPER,Y Subtract memory from accumulator SBC TAG(A),Y
with borrow indexed by Y
STA OPER Store accumulator in memory STA TAG(A)

——— .

MNEMONIC/OPERAND

DESCRIPTION

STA OPER,X Store accumulator in memory STA TAG(A),X
indexed by X

STA OPER, Y Store accumulator in memory STA TAG(A),Y
indexed by Y

STX OPER Store index X in memory STX TAG(A)

STY OPER Store index Y in memory STY TAG(A)

TAG = absolute reference, relocatable reference, or global reference

In the preceding tables, TAG references may be one of three types.

ABSOLUTE REFERENCE:

When defining/accessing defined data, all references are resolved
at assembly time and are displayed in the assembly listing.

GLOBAL REFERENCE:

When defining/accessing global data, the list file outputs a zero
byte, followed by a "G". The linker will select from its symbol table the
global variable and resolve the low or high byte.

RELOCATABLE REFERENCE:

When defining/accesing relocatable data, the
shows the low byte of the reference, followed by a "
the entire relocation constant is transferred to the
(ELINK2.SAV) will locate the actual value and select
or high byte.

assembler list always
" mark. However,
linker. The linker
the appropriate low

The ability to force zero page and zero page indexed addressing modes
has been implemented (for those instructions which it is legal). The instruc-—
tions are described in the table below.

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

ADC ZPAGE Add with carry memory to accumulator ADC TAG(Z)

ADC ZPAGE,X Add with carry memory to accumulator ADC TAG(Z),X
indexed by X

AND ZPAGE Logical AND memory with accumulator AND TAG(Z)

AND ZPAGE,X Logical AND memory with accumulator AND TAG(Z),X
indexed by X

ASL ZPAGE Shift left one bit (memory or accumu- ASL TAG(Z)
lator)

ASL ZPAGE,X Shift left one bit (memory or accumu- ASL TAG(Z),X
lator) indexed by X

BIT ZPAGE Test bits in memory with accumulator BIT TAG(Z)

CcMP ZPAGE Compare memory with accumulator CMP TAG(Z)

CMP ZPAGE,X Compare memory with accumulator CMP TAG(Z),X
indexed by X

CPX ZPAGE Compare memory and index X CPX TAG(Z)

CPY ZPAGE Compare memory and index Y CPY TAG(Z)

DEC ZPAGE Decrement memory by one DEC TAG(Z)

DEC ZPAGE, X Decrement memory by one indexed by X DEC TAG(Z),X

EOR ZPAGE Exclusive OR memory with accumulator EOR TAG(Z)

EOR ZPAGE,X Exclusive OR memory with accumulator EOR TAG(Z),X
indexed by X

INC ZPAGE Increment memory by one INC TAG(Z)

INC ZPAGE,X Increment memory by one indexed by X INC TAG(Z),X

LDbA ZPAGE Load the accumulator with memory LDA TAG(Z)

LDA ZPAGE,X Load the accumulator with memory LDA TAG(Z),X
indexed by X

LDX ZPAGE Load Index X with memory LDX TAG(Z)

LDX ZPAGE,Y Load Index X with memory LDX TAG(Z),Y
indexed by Y

LDY ZPAGE Load Index Y with memory LDY TAG(Z)

LDY ZPAGE,X Load Index Y with memory LDY TAG(Z),X
indexed by X

LSR ZPAGE Shift right one bit LSR TAG(Z)

LSR ZPAGE,X Shift right one bit with LSR TAG(Z),X

indexed by X

A-5

MNEMONIC/OPERAND DESCRIPTION - EXAMPLE

ORA ZPAGE Logical OR memory with accumulator ORA TAG(Z)

ORA ZPAGE, X Logical OR memory with accumulator ORA TAG(Z),X
indexed by X

ROL ZPAGE Rotate one bit left ROL TAG(Z)

ROL ZPAGE,X Rotate one bit left indexed by X ROL TAG(Z),X

ROR ZPAGE Rotate one bit right ROR TAG(Z)

ROR ZPAGE,X Rotate one bit right indexed by X ROR TAG(Z),X

SBC ZPAGE Subtract memory from accumulator SBC TAG(Z)
with borrow

SBC ZPAGE, X Subtract memory from accumulator SBC TAG(Z),X
with borrow indexed by X

STA ZPAGE Store accumulator in memory STA TAG(Z)

STA ZPAGE,X Store accumulator in memory STA TAG(Z),X
indexed by X

STX ZPAGE Store index X in memory STX TAG(Z)

STX ZPAGE,Y Store index X in memory indexed by Y STX TAG(Z),Y

STY ZPAGE Store index Y in memory STY TAG(Z)

STY ZPAGE,X Store index Y in memory indexed by X STY TAG(Z),X

TAG = absolute reference, relocatable reference, or global reference

If TAG is absolute and greater than FF, an error will be indicated
at assembly time.

If TAG is relocatable or global and greater than FF, an error will
be indicated at link time.

The following lists additional information for programming with
the cross assembler.

l.) 1If address zero is referenced, the instruction will be assembled
with the extended addressing mode instead of the direct addressing mode.
To have the instruction assemble address zero as only a byte, you must
use the force zero page syntax.

2.) Addressing references in zero page must be predefined.

3.) The use of complex forward references should be avoided as they
may result in phase errors. However, when a complex forward reference is
made, it can be forced absolute, thereby avoiding phasing errors.

ex.) LDX TAG+3(A)
where TAG is a forward reference.

EMULOGIC, INC.

3 Technology Way
Norwood, MA 02062-3978
Tel: (617) 329-1031
Telex: 710-336~5908

EMULOGIC

6502

User’s Guide Supplement

Order Number: CSU-3006-01

6502 USER’S GUIDE SUPPLEMENT

This document supplements the ECL-3211 System User’s Guide by providing
operational information specific to the emulation of 6502 and compatible
microprocessors. This document describes special set—-up procedures, condi-
tions, and limitations to be noted when emulating the 6502, It is assumed
here that the reader has read the User’s Manual and is already familiar

with the details of the 6502. Ready access to the technical literature is
a plus.

This supplement covers five general areas.
1) Installation

2) Initialization

3) Abbreviations (p.3)
4) Unique Features (p.7)
5) Electrical (DC) Characteristics (p.11)

*%% INSTALLATION #**:

System installation instructions will be found in the User’s Manual.

#%% INITIALIZATION #*:

Type on the keyboard "RUN LO1500" to load the Emulation Software into the
ECL-3211. (The "RUN" command is discussed in the User’s Guide.) Note that
a user can use the Operating System’s RENAME function to give the file a
name the wuser would prefer. Additionally, a Command File can be created
which can invoke L01500.

There are no special initialization instructions for the 6502.

6502 USER’S GUIDE SUPPLEMENT PAGE 3

% ABBREVIATIONS #

SYSTEM DISPLAY

These are seen on the top half of the display when wusing the Emulation
Software. All of these registers and flags can be loaded with user pre-

fered values with the SET Command or ALTER mode as described in the User
Manual or HELP file.

kkk **%% DESCRIPTION #***

PC Program Counter 16 bits/4 hex digits
X Index Register X 8 bits/2 hex digits
S Status Register 8 bits/2 hex digits
A Accumulator 8 bits/2 hex digits
Y Index Register Y 8 bits/2 hex digits
P Stack Pointer 8 bits/2 hex digits
N Negative Result (Sign) Status bit 7

v Overflow Status bit 6

B Break Status bit 4

D Decimal Mode (BCD) Status bit 3

I Interrupt enable/disable Status bit 2

Z Zero Status bit 1

C Carry Status bit 0

6502 USER’S GUIDE SUPPLEMENT PAGE 4

TRACE DISPLAY Note: Low=0 High=1 Don’t Care=X

"1" and "O" refer to ELECTRICAL,
NOT logical levels; though for
ECL-3211 functions logical and
electrical coincide.

These are seen when examining the Trace.

* k% *%% DESCRIPTION #%%

IQ Interrupt Request-L

NM Non-Maskable Interrupt-L

RS Reset-L

RY Ready

RD Read/Write-L

S0 Set Overflow

BA Bus Available; generated by the ECL-3211, a "0" indicates that

the Data Bus is Tristate.

SY Sync

6502 USER’S GUIDE SUPPLEMENT PAGE 5

BREAKPOINT DISPLAY Note: Low=0 High=1 Don’t care=X

These are seen when examining or setting Breakpoints.

EO-E7 Pod External Input 0-7
SWl1 Logical Switch 1
External Trigger 1
SW2 Logical Switch 2
External Trigger 2
SW3 Logical Switch 3
SW4 Logical Switch &4
ROM ROM access; "1" means trigger on a read from

an address designated as ROM.

SYNC SYNC; A "1" indicates the fetch of the first byte of
an Op Code as a Breakpoint Condition.

COl "1" selects Counter 1 expired
co2 "1" selects Counter 2 expired
ADDR Program Counter; 16 bits

DATA Data; 8 bits

IRQ Interrupt Request-L

NMI Non—-Maskable Interrupt-L

RES Reset-L

RDY Ready

READ Read/Write-L

SO Set Overflow

BA Bus Available; a "O" selects as a Breakpoint condition

the Data Bus being Tristate.

PH=JMP The 6502 Pod performs Phantom Jumps
as a Breakpoint Action.

)02 USER’S GUIDE SUPPLEMENT PAGE 7

*%**% UNIQUE FEATURES
L0O1500

The file name for the Emulation Software is LO1500. It is accessed through
the Operating System hosted by the ECL-3211’s CPU.

RESET

The ECL-3211’s RESET command resets the 6502 Pod only, and does not reset
the Target. A Reset generated by the Target has effect during emulation

only.
NO TARGET

Not having the 6502 Pod deployed in a target will not affect the operation
of the Emulator in any way, assuming the user does not try to access
resources in the Target.

MAX FREQ

The maximum frequency of operation is 2 Megahertz for both Target and
ECL-3211 memory.

DEC INTERNAL

The 6502 Pod cannot operate using the bank of memory termed in the User’s
Guide as DEC Internal.

6502 USER’S GUIDE SUPPLEMENT PAGE 8

PHANTOMS

The 6502 Pod performs Phantom Jumps. Naturally, provision must be made to
return to the original code path if that is desired by the user.

There are two important qualifications to their use:
1) The instruction immediately preceding the Phantom Jump must perform a

Prefetch. This means that a Phantom Jump cannot be inserted after a 2 or 3
byte intruction.

2) The address desired as a Breakpoint condition must be defined as an
address value (ADDR) rather than a Program Counter value (PC).

To illustrate, consider the following examples of defining Breakpoint 4 as
a Phantom Jump to address 5050:

Given this code segment-- ADDR INSTR DATA
* k% * Kk Kk Rkxk
A500 DEX CA
A501 LDX OFF A2
A502 FF
A503 INX E8

. . .

a) Typing "BR 4 PH=5050/ADDR=A501" will be successful. The Phantom Jump is
being inserted by the Prefetch of a single byte instruction at a location
defined as ADDR rather than PC (Program Counter).

b) Typing "BR 4 PH=5050/PC=A501" will fail. The address where the Phantom
Jump is intended to be inserted is defined as PC, a Program Counter value.

c) Typing "BR 4 PH=5050/ADDR=A503" will fail. The preceding instruction,
LDX, is a 2 byte instruction and does not Prefetch.

5502 USER’S GUIDE SUPPLEMENT PAGE 9

TRACE DATA CAPTURE

If the Trace has been turned on, it takes a 'snapshot" of conditions during
each Machine Cycle when the conditions are valid. For example, the Data
bus is sampled when it contains valid Data. Address information is sampled
when there 1is a valid Address on the bus. Control signals are sampled at
the same time as the Data unless they must be sampled at a different point
in the Machine Cycle. (The Trace is turned on by defining a Breakpoint
with conditions that will be met and an Action statement including Set
Trace, as described in the User’s Guide and HELP file.)

Instructions are disassembled in the Trace as they appeared on the Data bus
when they were fetched.

Note that the External Inputs are not sampled simultaneously in a Machine
Cycle. External Inputs 0-3 are sampled during the valid address time of a
Machine Cycle and External Inputs 4-7 are sampled during valid data time.

BREAKPOINT ACTION

Defined Breakpoint conditions are tested and resolved prior to the end of
the Machine Cycle. Any Breakpoint Actions for a Breakpoint with conditions
that have been met in a Machine Cycle commence at the completion of that
Machine Cycle.

CLOCK

The Emulator provides two sources of Clock signals for the 6502 Pod, the
ECL-3211 and the Target circuit. Internal Clock has a guarantee of 100
Kilohertz resolution.

--- External ---

External Clock is the mode in which the Target Circuit provides the clock.
Since it is Dbuffered in the Pod with TTL logic, the clock signal must be
TTL driven or equivalent. Do not clock the Pod with a Crystal/RC Network
circuit.

Type "FREQ EXT" to select this mode.
--- Internal ---

Internal Clock is the mode in which the 6502 Pod is clocked by the Emula-
tor. The clocking signal taken from the Target is not used. @1 (pin 3)
and ¢2 (pin 39) are still active.

Type "FREQ xxxx" to select the Internal Clock mode. '"xxxx" is the value of
the frequency in units of Kilohertz. There is no need to specify "Inter-
nal" at any point.

6502 USER’S GUIDE SUPPLEMENT PAGE 10

NOT EMULATING

When the ECL-3211 is not in Emulation mode, the signals from the 6502 Pod
to the Target have the following status:

A0-Al>5 Active

DO-D7 Tri-state

SYNC Active

SO Active

g2 Active

g1 Active

¢O Active; ignored if Clock Internal selected
IRQ-L High; ignored by Pod
NMI-L High; ignored by Pod
RES-L High; ignored by Pod
RDY High; ignored by Pod

R/W-L High; ignored by Pod

6502 USER’S GUIDE SUPPLEMENT PAGE 11

*%% ELECTRICAL (DC) CHARACTERISTIC

Signal Buffer Output Input Delay, Termination,
Type Drive Load additional pull-up R
7 4xxx High Low High Low nSec ohms
mA mA mA mA typical
A0-Al5 LS245 -15.0 24.0 - - 12 -
DO-D7 LS245 -15.0 24,0 0.02 0.2 8 -
SYNC LS04 -0.4 8.0 - - 13 -
R/W-L FO4 -1.0 2.0 - - 7 -
@2 LS04 -0.4 8.0 - - 13 -
g1 LS04 ~0.4 8.0 ~- -- 20 --
SO LS04 - - 0.02 -0.4 20 -
go LS00 - -- 0.02 -0.4 20 -
IRQ-L 1832 - - 0.02 -0.4 14 -
NMI-L LS32 - - 0.02 -0.4 14 -
RES-L LS32 - - 0.02 -0.4 24 -
RDY L1832 - - 0.02 -0.4 14 -

HALT-L Ls32 - - 0.02 -0.4 14 -

